Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
3 Biotech ; 14(3): 90, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38414829

ABSTRACT

Rice production faces a significant threat from the rice leaffolder, Cnaphalocrocis medinalis. To address this challenge, growing resistant varieties stands out as a sustainable and eco-friendly pest management strategy. This necessitates identifying resistant sources and understanding their inheritance patterns through employing DNA markers for marker-assisted resistance breeding. Our study involves screening for resistant cultivars following the SES of IRRI, assessing genetic diversity among landraces using molecular markers, and identifying genomic regions associated with resistance. Screening indicated that 33.33%, 27.08%, 19.79%, and 19.80% of genotypes were resistant, moderately resistant, susceptible, and admixture, respectively. Landraces were categorized into three clusters, with clusters I and II predominantly containing moderately resistant and resistant cultivars, and cluster III mainly susceptible types. Molecular variance analysis revealed 12% variation among populations and 88% within the population. Simple linear regression identified significant marker-trait associations, with markers RM 162 and RM 284 on chromosomes 6 and 8, respectively, found highly associated with leaffolder resistance. Phenotypic variation in leaffolder damage correlated highly with the allelic effects of these markers. Further confirmation of marker linkage with resistance loci was established through independent assays on highly resistant and susceptible genotypes. The information derived from genetic diversity and marker-trait associations will be useful for future marker-assisted resistance breeding programs, enhancing the sustainability of rice production.

2.
Sci Rep ; 14(1): 2127, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38267471

ABSTRACT

Cashew is cultivated in varied agro-ecological regions of India and yield levels vary with regions. Therefore, to identify stable genotype for yield, 18 genotypes were tested in four environments for nut yield and ancillary traits during 2008 to 2018 in randomized block design with two replications. The data of 6th annual harvest and cumulative nut yield of six years was analyzed employing additive main effect and multiplicative interaction (AMMI) and genotype and genotype by environment (GGE) methods. Analysis of variance for 6th annual harvest indicated significant differences (p < 0.01) for eight traits. Environments varied significantly (p < 0.01) for seven traits. Genotype by environment (G × E) interactions were significant (p < 0.01) for all traits. Analysis of variance for cumulative yield revealed significant variations between genotypes, environments, G x E interactions. Interaction principal component analysis (IPCA) 1 (84.39%) and IPCA 2 (10.27%) together captured 95% of variability. Genotypes, environments and G × E interaction were accounted for 16.18%, 4.50% and 77.22% respectively of total variation. The environment Pilicode discriminated better while Vridhachalam was representative. BPP-8 and Vengulra-7 were the winning genotypes in Bhubaneswar while Kanaka and Priyanka in Pilicode, Vengurla-4 in Jhargram and UN-50 in Vridhachalam. Therefore, promoting cultivation of these winning genotypes in the corresponding environments is highly recommended to enhance cashew nut production. As per ASV (AMMI stability value,) K-22-1 was stable genotype followed by Bhubaneswar-1. As per YSI (yield stability index), Bhubaneswar-1 was stable and high yielding followed by K-22-1 and BPP-8. Thus stable genotypes identified in this study viz., K-22-1 and Bhuvaneswar-1 are recommended for cultivation in west and east regions of India which have most cashew growing areas for increasing the cashew nut production.


Subject(s)
Anacardium , Cyanoacrylates , Nuts/genetics , Phenotype , Genotype
3.
Front Plant Sci ; 14: 1131315, 2023.
Article in English | MEDLINE | ID: mdl-37229127

ABSTRACT

Blast pathogen, Magnaporthe spp., that infects ancient millet crops such pearl millet, finger millet, foxtail millet, barnyard millet, and rice was isolated from different locations of blast hotspots in India using single spore isolation technique and 136 pure isolates were established. Numerous growth characteristics were captured via morphogenesis analysis. Among the 10 investigated virulent genes, we could amplify MPS1 (TTK Protein Kinase) and Mlc (Myosin Regulatory Light Chain edc4) in majority of tested isolates, regardless of the crop and region where they were collected, indicating that these may be crucial for their virulence. Additionally, among the four avirulence (Avr) genes studied, Avr-Pizt had the highest frequency of occurrence, followed by Avr-Pia. It is noteworthy to mention that Avr-Pik was present in the least number of isolates (9) and was completely absent from the blast isolates from finger millet, foxtail millet, and barnyard millet. A comparison at the molecular level between virulent and avirulent isolates indicated observably large variation both across (44%) and within (56%) them. The 136 Magnaporthe spp isolates were divided into four groups using molecular markers. Regardless of their geographic distribution, host plants, or tissues affected, the data indicate that the prevalence of numerous pathotypes and virulence factors at the field level, which may lead to a high degree of pathogenic variation. This research could be used for the strategic deployment of resistant genes to develop blast disease-resistant cultivars in rice, pearl millet, finger millet, foxtail millet, and barnyard millet.

4.
Planta ; 256(5): 87, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36149531

ABSTRACT

MAIN CONCLUSION: Genomic selection and its importance in crop breeding. Integration of GS with new breeding tools and developing SOP for GS to achieve maximum genetic gain with low cost and time. The success of conventional breeding approaches is not sufficient to meet the demand of a growing population for nutritious food and other plant-based products. Whereas, marker assisted selection (MAS) is not efficient in capturing all the favorable alleles responsible for economic traits in the process of crop improvement. Genomic selection (GS) developed in livestock breeding and then adapted to plant breeding promised to overcome the drawbacks of MAS and significantly improve complicated traits controlled by gene/QTL with small effects. Large-scale deployment of GS in important crops, as well as simulation studies in a variety of contexts, addressed G × E interaction effects and non-additive effects, as well as lowering breeding costs and time. The current study provides a complete overview of genomic selection, its process, and importance in modern plant breeding, along with insights into its application. GS has been implemented in the improvement of complex traits including tolerance to biotic and abiotic stresses. Furthermore, this review hypothesises that using GS in conjunction with other crop improvement platforms accelerates the breeding process to increase genetic gain. The objective of this review is to highlight the development of an appropriate GS model, the global open source network for GS, and trans-disciplinary approaches for effective accelerated crop improvement. The current study focused on the application of data science, including machine learning and deep learning tools, to enhance the accuracy of prediction models. Present study emphasizes on developing plant breeding strategies centered on GS combined with routine conventional breeding principles by developing GS-SOP to achieve enhanced genetic gain.


Subject(s)
Plant Breeding , Selection, Genetic , Genome, Plant/genetics , Genomics , Phenotype
5.
Physiol Mol Biol Plants ; 28(6): 1217-1232, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35910441

ABSTRACT

Assessing genetic diversity and development of a core set of elite breeding lines is a prerequisite for selective hybridization programes intended to improve the yield potential in rice. In the present study, the genetic diversity of newly developed elite lines derived from indicax tropical japonica and indicax indica crosses were estimated by 38 reported molecular markers. The markers used in the study consist of 24 gene-based and 14 random markers related to grain yield-related QTLs distributed across the rice genome. Genotypic characterization was carried out to determine the genetic similarities between the elite lines. In total, 75 alleles were found using 38 polymorphic markers, with polymorphism information content ranging from 0.10 to 0.51 with an average of 0.35. The genotypes were divided into three groups based on cluster analysis, structure analysis and also dispersed throughout the quadrangle of PCA, but nitrogen responsive lines clustered in one quadrangle. Seven markers (GS3_RGS1, GS3_RGS2, GS5_Indel1, Ghd 7_05SNP, RM 12289, RM 23065 and RM 25457) exhibited PIC values ≥ 0.50 indicating that they were effective in detecting genetic relationships among elite rice. Additionally, a core set of 11 elite lines was made from 96 lines in order to downsize the diversity of the original population into a small set for parental selection. In general, the genetic information collected in this work will aid in the study of grain yield traits at molecular level for other sets of rice genotypes and for selecting diverse elite lines to develop a strong crossing programme in rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01190-8.

6.
Sci Rep ; 12(1): 13832, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35974066

ABSTRACT

Quantitative trait loci (QTL) for rice grain weight identified using bi-parental populations in various environments were found inconsistent and have a modest role in marker assisted breeding and map-based cloning programs. Thus, the identification of a consistent consensus QTL region across populations is critical to deploy in marker aided breeding programs. Using the QTL meta-analysis technique, we collated rice grain weight QTL information from numerous studies done across populations and in diverse environments to find constitutive QTL for grain weight. Using information from 114 original QTL in meta-analysis, we discovered three significant Meta-QTL (MQTL) for grain weight on chromosome 3. According to gene ontology, these three MQTL have 179 genes, 25 of which have roles in developmental functions. Amino acid sequence BLAST of these genes indicated their orthologue conservation among core cereals with similar functions. MQTL3.1 includes the OsAPX1, PDIL, SAUR, and OsASN1 genes, which are involved in grain development and have been discovered to play a key role in asparagine biosynthesis and metabolism, which is crucial for source-sink regulation. Five potential candidate genes were identified and their expression analysis indicated a significant role in early grain development. The gene sequence information retrieved from the 3 K rice genome project revealed the deletion of six bases coding for serine and alanine in the last exon of OsASN1 led to an interruption in the synthesis of α-helix of the protein, which negatively affected the asparagine biosynthesis pathway in the low grain weight genotypes. Further, the MQTL3.1 was validated using linked marker RM7197 on a set of genotypes with extreme phenotypes. MQTL that have been identified and validated in our study have significant scope in MAS breeding and map-based cloning programs for improving rice grain weight.


Subject(s)
Oryza , Quantitative Trait Loci , Asparagine/genetics , Edible Grain/genetics , Genetic Association Studies , Oryza/genetics , Phenotype , Plant Breeding
7.
Sci Rep ; 11(1): 18649, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34545116

ABSTRACT

Sugarcane is a trans-seasonal long-duration crop and tillering phase (60-150 days) is the most sensitive phase for moisture stress, causing significant reduction in biomass accumulation. The study focussed to assess the Genotype × Environment Interaction (GEI) for tillering phase moisture stress and to identify the stable genotypes in sugarcane. The study dealt with 14 drought tolerant genotypes and two standards (Co 86032 and CoM 0265) which were evaluated in two plant and one ratoon trials at four locations in Maharashtra, India. The moisture stress was imposed for 60 days from 90 to 150 days after planting and corresponded to tillering phase by withholding the irrigation. The AMMI ANOVA showed significant GEI for cane and CCS yield accounting 18.33 and 19.45 percent of variability respectively. Drought and genotype main effects were highly significant accounting 49.08 and 32.59 percent variability for cane yield and, 52.45 and 28.10 percent variability for CCS yield respectively. The first two interactive principal component (IPCA) biplots of AMMI showed diverse nature of all four environments and the Discriminative vs Mean biplots of Genotype + genotype × environment interaction (GGE) model showed that 'Pune' as the highly discriminating environment. The genotype ranking biplots of GGE showed that Co 85019 was the most stable genotype followed by Co 98017. Similar results were also observed in Yield vs IPCA1 biplot of AMMI, which revealed Co 85019 and Co 98017 as high yielding stable varieties. Yield related environmental maximum (YREM) showed thirteen and nine percent loss due to crossover interactions in Co 85019 for cane yield and CCS yield respectively. The multi-environment BLUP and genotype stability index (GSI) has reaffirmed that Co 85019 as a drought proof and stable genotype with high yield under tillering phase drought stress. The results suggested using Co 85019 for cultivation in drought prone regions and the usefulness of the methodology for identifying more such sugarcane varieties for the benefit of resource poor famers in drought affected regions.

8.
J Appl Genet ; 62(4): 571-583, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34247322

ABSTRACT

As a prelude to exploit DNA methylation-induced variation, we hypothesized the existence of substantial natural DNA methylation variation and its association with economically important traits in dolichos bean, and tested it using amplified methylation polymorphism-polymerase chain reaction (AMP-PCR) assay. DNA methylation patterns such as internal, external, full and non-methylation were amplified in a set of 64 genotypes using 26 customized randomly amplified polymorphic DNA (RAPD) primers containing 5'CCGG3' sequence. The 64 genotypes included 60 germplasm accessions (GA), two advanced breeding lines (ABLs) and two released varieties. The ABLs and released varieties are referred to as improved germplasm accessions (IGA) in this study. The association of DNA methylation patterns with economically important traits such as days to 50% flowering, raceme length, fresh pods plant-1, fresh pod yield plant-1 and 100-fresh seed weight was explored. At least 50 genotypes were polymorphic for DNA methylation patterns at 10 loci generated by seven of the 26 RAPD primers. The GA and IGA differed significantly for total, full and external methylation and the frequency of methylation was higher in GA compared to that in IGA. The genotypes with external methylation produced longer racemes than those with full, internal and non-methylation in that order at polymorphic RAPD-11-242 locus. High pod yielding genotypes had significantly lower frequency of full methylation than low yielding ones. On the contrary, the genotypes that produced heavier fresh seeds harboured higher frequencies of total and externally methylated loci than those that produced lighter fresh seeds.


Subject(s)
Dolichos , DNA Methylation , Genetic Variation , Plant Breeding , Polymerase Chain Reaction , Random Amplified Polymorphic DNA Technique
9.
J Genet ; 982019 Sep.
Article in English | MEDLINE | ID: mdl-31544790

ABSTRACT

The six basic generations (two parents, F1, F2 and backcrosses) of 14 crosses developed from nine parents differing in fruits node-1 and fruit orientation were evaluated to decipher the genetics of three quantitative traits (average fruit weight, fruits plant-1 and green fruit yield plant-1) during the rainly season of 2016 and 2017. The magnitude and direction of the additive genetic effects [a], dominance genetic effects [d], magnitudes of additive genetic variance (σ2 A) and dominance genetic variance (σ2 D) varied with the genetic background of the crosses and traits. In the genetic background of crosses involving parents differing in fruit node-1, the inheritance of average fruit weight, fruits plant-1 and fruit yield plant-1 were controlled by the genes with both additive and ambidirectional dominant effects. On the contrary, genes with only additive effects controlled the inheritance of average fruit weight, fruits plant-1 and fruit yield plant-1 in most genetic backgrounds of crosses involving parents differing in fruit orientation and those differing in both fruits node-1 and fruit orientation. Further, the genes controlling the inheritance of all the traits are dispersed among the parents used in the investigation. These results are discussed in relation to strategies to be used in breeding chilli.


Subject(s)
Capsicum/genetics , Fruit/genetics , Quantitative Trait, Heritable , Crosses, Genetic , Epistasis, Genetic , Genes, Dominant , Genes, Plant , Genetic Variation , Models, Genetic , Phenotype , Plant Breeding
10.
Front Microbiol ; 10: 537, 2019.
Article in English | MEDLINE | ID: mdl-30984123

ABSTRACT

The meals after oil extraction from many oilseed crops have nutrition and biofumigation potential for land application. Oilseed meal (SM) from the dedicated bioenergy crop Jatropha curcas were implicated to contain compounds that have antibacterial properties on some soil pathogens. However, little is known about its effect on non-targeted soil microbial community, especially on fungi. SM from Camelina sativa contains moderate level of glucosinolates (GLS) and was under studied. To investigate soil fungal community responses to jatropha and camelina SMs, we conducted a lab based microcosm study, amending soil with 1% SMs of jatropha, camelina, flax, and biomass of wheat straw. Fungal community abundance and structure were analyzed based on the ITS region using qPCR and tag-pyrosequencing. Microbial functional changes were examined by community level physiological profile (CLPP) using Biolog assay. Both SMs from jatropha and camelina showed biofumigant properties and inhibited fungal proliferation. Jatropha SM significantly altered soil fungal community structures with lower fungal biodiversity and higher Chaetomium composition. Camelina SM amended soil promoted Fusarium proliferation. CLPP indicated sequential hierarchy for C metabolism in the oilseed-amended microcosms was generally complex C > phosphate-associated C > carboxylic acids > carbohydrates > amines > amino acids. No significant difference in CLPP was detected due to the type of SM treatment. Our data indicate that both SMs of jatropha and camelina have biofumigant properties and can differentially impact soil microbial communities, and the changes were relatively persistent over time. Microbial functional patterns on the other side were not impacted by SM type. Our study revealed biofumigant and nutritional influence of SMs from dedicated biofuel plants on soil microbial community. This information will help properly using jatropha and camelina SMs for pathogen control while minimizing their negative impacts on non-target microorganisms. However, further studies in the field are demanded to investigate their influences in real practice.

12.
PLoS One ; 11(9): e0163209, 2016.
Article in English | MEDLINE | ID: mdl-27685808

ABSTRACT

Aberrant activation of nuclear factor kappa B (NF-κB) has been linked with the pathogenesis of several proinflammatory diseases including number of cancers and inflammatory bowel diseases. In the present work, we evaluated the anticancer activity of 1,2-oxazines derivatives against colorectal cancer cell lines and identified 2-((2-acetyl-6,6-dimethyl-4-phenyl-5,6-dihydro-2H-1,2-oxazin-3-yl)methyl)isoindoline-1,3-dione (API) as the lead anticancer agent among the tested compounds. The apoptosis inducing effect of API was demonstrated using flow cytometry analysis and measuring the caspase 3/7 activity in API treated cells. Based on the literature on inhibition of NF-κB by oxazines, we evaluated the effect of 1,2-oxazines against the ability of NF-κB binding to DNA, NF-κB-dependent luciferase expression and IκBα phosphorylation. We found that, API abrogate constitutive activation of NF-κB and inhibits IκBα phosphorylation in HCT116 cells. Our in silico analysis revealed the binding of oxazines to the hydrophobic cavity that present between the interface of p65 and IκBα. Given the relevance with aberrant activation of NF-κB in inflammation bowel disease (IBD), we evaluated the effect of API on dextran sulphate sodium-induced IBD mice model. The treatment of IBD induced mice with API decreased the myeloperoxidase activity in colonic extract, modulated the colon length and serum levels of pro- and anti-inflammatory cytokines such as TNF-α, IFN-γ, IL-6, IL-1ß and IL-10. Furthermore, the histological analysis revealed the restoration of the distorted cryptic epithelial structure of colon in the API treated animals. In conclusion, we comprehensively validated the NF-κB inhibitory efficacy of API that targets NF-κB in in vitro colon cancer and an in vivo inflammatory bowel disease model.

13.
Bioorg Med Chem Lett ; 24(15): 3618-21, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24909082

ABSTRACT

Thirteen 2-oxazine-based small molecules were synthesized targeting 5-lipoxygenase (LOX), and acetylcholinesterase (AChE). The test revealed that the newly synthesized compounds had potent inhibition towards both 5-LOX and AChE in lower micro molar concentration. Among the tested compounds, the most active compound, 2-[(2-acetyl-6,6-dimethyl-4-phenyl-5,6-dihydro-2H-1,2-oxazin-3-yl)methyl]-1H-isoindole-1,3(2H)-dione (2a) showed inhibitory activity towards 5-LOX and AChE with an IC50 values of 1.88, and 2.5 µM, respectively. Further, the in silico molecular docking studies revealed that the compound 2a bound to the catalytic domain of AChE strongly with a highest CDOCKER score of -1.18 kcal/mol when compared to other compounds of the same series. Additionally, 2a showed a good lipophilicity (logP=2.66), suggesting a potential ability to penetrate the blood-brain-barrier. These initial pharmacological data revealed that the compound 2a could serve as a drug-seed in developing anti-Alzheimer's agents.


Subject(s)
Acetylcholinesterase/metabolism , Arachidonate 5-Lipoxygenase/metabolism , Cholinesterase Inhibitors/pharmacology , Lipoxygenase Inhibitors/pharmacology , Oxazines/pharmacology , Phthalimides/pharmacology , Small Molecule Libraries/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase Inhibitors/chemistry , Models, Molecular , Molecular Structure , Oxazines/chemical synthesis , Oxazines/chemistry , Phthalimides/chemical synthesis , Phthalimides/chemistry , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
14.
Front Microbiol ; 5: 729, 2014.
Article in English | MEDLINE | ID: mdl-25709600

ABSTRACT

The meals from many oilseed crops have potential for biofumigation due to their release of biocidal compounds such as isothiocyanates (ITCs). Various ITCs are known to inhibit numerous pathogens; however, much less is known about how the soil microbial community responds to the different types of ITCs released from oilseed meals (SMs). To simulate applying ITC-releasing SMs to soil, we amended soil with 1% flax SM (contains no biocidal chemicals) along with four types of ITCs (allyl, butyl, phenyl, and benzyl ITC) in order to determine their effects on soil fungal and bacterial communities in a replicated microcosm study. Microbial communities were analyzed based on the ITS region for fungi and 16S rRNA gene for bacteria using qPCR and tag-pyrosequencing with 454 GS FLX titanium technology. A dramatic decrease in fungal populations (~85% reduction) was observed after allyl ITC addition. Fungal community compositions also shifted following ITC amendments (e.g., Humicola increased in allyl and Mortierella in butyl ITC amendments). Bacterial populations were less impacted by ITCs, although there was a transient increase in the proportion of Firmicutes, related to bacteria know to be antagonistic to plant pathogens, following amendment with allyl ITC. Our results indicate that the type of ITC released from SMs can result in differential impacts on soil microorganisms. This information will aid selection and breeding of plants for biofumigation-based control of soil-borne pathogens while minimizing the impacts on non-target microorganisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...